Cholinergic suppression of hippocampal sharp-wave ripples impairs working memory

Cholinergic suppression of hippocampal sharp-wave ripples impairs working memory
Yiyao Zhang, Liang Cao, Viktor Varga, Miao Jing, Mursel Karadas, Yulong Li, and György Buzsáki
PNAS

Theta oscillations supported by the medial septum are believed to be a critical mechanism for learning and memory. We report that, in addition to theta oscillations, hippocampal SPW-Rs are important. Enhanced cholinergic activation in the hippocampus during the delay between choices in a spontaneous alternation task abolished SPW-Rs and impaired choice performance in mice. Our findings also demonstrate that the outcome of optogenetic manipulation of a key neurotransmitter, acetylcholine (ACh), depends on the state of the brain at the time of the perturbation.

2021-04-13
Help

BrainSTEM (Brain STructured Experimental Metadata) is a collaborative electronic lab notebook for FAIR experimental neuroscience. It has a customizable web interface and a standardized yet flexible data model and is designed to capture a range of electrophysiology, imaging, and behavioral data. Granular permissions, including one-click public sharing, promote collaborations and open science. BrainSTEM is designed with ease of adoption and use as a primary consideration and facilitates compliance with NIH and other data-sharing requirements.

BrainSTEM can accelerate your science, promote collaboration, extend the lifetime of your data, and make FAIR data sharing easy. Please see the dedicated documentation website at below link.